
Universal scaling function for domain growth in the Glauber-Ising chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L67

(http://iopscience.iop.org/0305-4470/23/2/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) L67-L72. Printed in the U K  
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Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 18 October 1989 

Abstract. The equal-time correlation function is calculated at T = 0 for the one-dimensional 
k ing  model with Glauber dynamics. Random initial conditions, appropriate to a sudden 
quench from non-zero temperature, are imposed. Averaging over initial conditions yields 
the scaling form C ( r ,  t )  = f ( r 2 / f ) .  The scaling function is given by f ( x )  = 

( d y / a ) [ y ( l  - Y ) ] - ” ~  exp(-x/4y), and is universal, i.e. independent of the probability 
distribution for the initial conditions. 

The problem of domain growth, following a sudden quench of a system from an initial 
high-temperature state to a temperature deep in the ordered phase, ,is of considerable 
interest. Despite substantial effort [ 11, quantitative understanding of the evolving 
domain structure is limited. Much of the interest lies in the fact that this non-equilibrium 
phenomenon seems to exhibit many of the scaling properties familiar from the field 
of critical phenomena, together with a degree of universality. 

Of particular interest is the equal-time two-point correlation function or, 
equivalently, its Fourier transform, the time-dependent structure factor Ck( t ) .  In the 
late stages of domain growth there is much evidence, both numerical [2] and experi- 
mental [3], for the scaling form Ck(r)= L(t)dg(kL(t)), where L ( t ) -  t“  is the (single) 
length scale characterising the domain structure at time t, and d is the spatial dimension- 
ality. While the value of the growth exponent n is relatively well understood, both 
for conserved [4] ( n  = f) and non-conserved [ 5 ]  ( n  =;) order parameters, a first- 
principles calculation of the scaling function g(x), for either case, is still lacking. For 
the non-conserved case, however, the approximate scaling function derived by Ohta 
et a1 [6] by consideration of domain-wall motion, fits the data reasonably well. 

In view of the absence of exact results in this field, it would seem useful to consider 
a soluble model. This letter concerns such a soluble model of domain growth-the 
one-dimensional Ising model with Glauber dynamics. The Glauber dynamics imply 
that the order parameter is not conserved, i.e. this is a ‘model A’ system in the sense 
of Hohenberg and Halperin [7]. Since the correlation length is finite at any non-zero 
temperature T, the interest in this system is mainly limited to T = 0, where equilibrium 
cannot be achieved in finite time: domain growth proceeds indefinitely, yielding 
universal non-equilibrium behaviour at long times. We have in mind, for example, a 
sudden quench from some Ti>O to T = 0 .  The up-down spin symmetry of the 
Hamiltonian is unbroken (on the large scale) immediately following the quench, and 
remains unbroken at all subsequent times for an infinite system. Instead, a universal 
domain structure develops, with the characteristic domain size growing as L( t )  - t”’. 
The structure is universal in the sense that it is independent of the nature of the random 
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initial conditions, provided L( t) is large compared to any length scale characterising 
the initial conditions, e.g. the correlation length at T,. 

Although many of the results presented here can be derived as special cases of the 
general results given by Glauber [8], we derive them from first principles here, both 
to make this letter self-contained and to bring out explicitly the way in which universal 
scaling develops for late-stage growth at T = 0 .  The key role of T = 0 ,  especially, is 
emphasised in the present work. 

The model is defined by the Ising Hamiltonian 
N 

H = -J sisi,, 
i = l  

and the Glauber equation [8] for the spin configuration probability weight: 

(d/dt)P(Si , .  - . , S N ,  2 )  

Here p = 1/T, hi =J(Si-I+Si+l) is the local field at site i, and we have adopted for 
convenience periodic boundary conditions, Si+N = Si. 

The equation of motion for the equal-time spin-spin correlation function 

Ci,j( t )  = (Si( ?)Si( t ) )  = Tr{ P( SI, . . . , SN, t)SiSj} 

is readily derived from (1): 

(d/dt)Ci,j = -2Ci,j+(Si tanh phj)+(Sj tanhphi). 

Because the spins Si take values *1 only, 

tanh phi  =ftanh(2K)(Si-1 f S i + , ) + f ( S i - , + S i + , )  

for T + 0, where K = PJ. Using this result in (2) gives [8], for T = 0 and i Z j, 

(d/dt)Ci,j = -2Ci,j+f(Ci,j+l+ C,,,-,+ Ci+l,j+ Ci-l,j) i # j .  (3 )  

For i = j, one has simply 

c..=1 4 I (4) 

independent of t. 
Solving (3) requires specifying initial conditions. These are fixed by the initial spin 

configuration, Ci, j (0)  = Si(0)S,(O).  Equation (3) is greatly simplified by averaging over 
initial conditions (indicated by [. . .I), provided that the probability distribution for 
these is invariant under translations. Then 

[Ci,j(O)l= C(li-jl, 0) ( 5 )  

is a function of the separation only, a property which persists to all subsequent times. 
Thus 

r # O  ( 6 )  (d/d t ) C (  r, t ) = -2 C( r, t ) + C ( r + 1, t ) + C ( r - 1, t )  

and 

C(0, t )  = 1. (7) 
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Note that the property ( 5 )  is not too restrictive. It applies, for example, to the case 
where the initial state is obtained by quenching from a temperature T,. Then [. . .] is 
equivalent to a thermal average at T,, giving the form ( 5 )  with C(r,O)=exp(-r/&), 
where ti is the correlation length at T,. 

Equations (6) and (7) are readily solved by a combination of Fourier transformation 
in space and Laplace transformation in time. Fourier transforming first, via 

1 
N k  

C( r, t )  = - c k (  t )  exp(ikr) 

yields 

where yk = 2( 1 - cos k) = k2 for small k. 
The next step is to multiply (8) through by exp(-ik’r) and sum over r # 0. Using 

X r + o  exp{i(k- k ’ ) r } =  N&k,-l ,  and (d/df)ZkCk =o, yields 

dckld t  = - 7 k C k  + A (  f )  (10) 

with initial condition Ck(0) = ZrC(r, 0) exp(-ikr). 
Equations (10) and (1 1) can be solved by Laplace transform methods. Introducing 

yields 

where a ( s )  is the Laplace transform of A ( t ) ,  i.e. 

Combining (13) and (14), and using (9), yields an equation for a(s) :  

where we have converted the sum over k to an integral in the usual way. The latter 
step is justified if no k-mode is ‘macroscopically occupied’, i.e. provided the initial 
spin configuration contains no long-range order. If the contrary is true, such special 
values of k have to be extracted explicitly before converting the sum to an integral. 
An example of this, where the initial configuration has a net magnetisation, will be 
discussed below. For the moment, however, we assume no long-range order in the 
initial state. 

We now argue that, in the scaling limit (s + 0, k + 0 with s/ k2 arbitrary), c k  (0) is 
negligible compared to a(s ) ,  and may be dropped from the integrand in (15). This 



L70 Letter to the Editor 

will be justified a posteriori. Dropping Ck(0) in (15),  and replacing yk by k2 in the 
scaling limit, gives 

a ( s )  = 2s-'12. (16) 

Since the important values of k in the integral are of order s'I2, we see that Ck(0) is 
indeed negligible compared to a ( s )  for s + O  provided kCk(0) vanishes for k+0.  The 
latter condition, however, is ensured by (9). 

Inserting (16) into (13), and again dropping the term in ck(o), yields the scaling 
function in Fourier-Laplace space: 

c k ( s )  = 2 s - ' 1 2 ( s +  k2)-'. (17) 

It remains to transform back to real time using an inverse Laplace transform. Introduc- 
ing first the integral representation s-'12 = n-'l2 du u-'12 exp(-us) gives 

ds  exp{s(t-u)} 

where 6 is a positive infinitesimal. For t < U, the integration contour can be closed in 
the right half-plane to give zero. For t > U, it is closed in the left half-plane, picking 
up the pole at s = -k2. After the change of variable U = ty, the final result is 

Equation (19) is our final result for the time-dependent structure factor in the scaling 
limit. It has the expected scaling form C k ( f )  = t'/2g(k2t), i.e. it is a representation of 
S(k) for t + 00, showing the build up of a Bragg peak at large times. For k2t >> 1, the 
integral is dominated by y near 1 ,  and one obtains c k (  t )  + 2( .lrt)-"2k-2, in agreement 
with the expected k-(d+'' dependence [9] for general space dimensionality d. 

The scaling limit of the spin-spin correlation function is obtained from the structure 
factor (19) by Fourier transformation. The result is 

C(r,  t )  = lo' (dy / r ) [y ( l  -y)]-"2 exp(-r2/4ty). 

Again it has the expected scaling form C(r ,  t )  =f(r*/t) .  In particular, f(0) = 1, con- 
sistent with perfect order within a domain. The leading correction is nonanalytic at 
r = 0 :  C(r, t ) =  l - I r l / ( ~ t ) ' / ~  for r2/t<< 1 ,  consistent with the k-* behaviour found in 
the structure factor at large k. The linear dependence on separation should be a feature 
of the small-(r2/r) limit in any dimension. It is equivalent to the Debye-Porod law 
[ 101 for scattering from inhomogeneous media with sharp interfaces, and implies a 
k-""-dependence for the structure factor for k2t >> 1. In the opposite regime, r2/t  >> 1, 
equation (20) gives C (  r, t )  = ( 4 t / ~ r ' ) ' / ~  exp( -r2/4t). 

The above results can be extended to the case where domains grow at small but 
non-zero temperature following a quench from a higher temperature. In this case the 
system has a finite equilibration time: domain growth stops when the characteristic 
domain size reaches the equilibrium correlation length. The calculation is a straightfor- 
ward generalisation of the T = 0 calculation presented above. The final result for the 
average (over initial conditions) of the time-dependent structure factor is 

Ck( t )  = 2( : ) ' I 2  & jo' dyy-"2{~2  exp( - K 2 f y )  + k2 exp( -[ k2 + ~ ' ] t  + k2ty)} 
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which generalises (19). Here K = .$-’ -- exp(2K)/2 is the inverse correlation length. 
Equation (21) has the scaling form c k (  t )  = t1/2g(k2t, K’t). For K 2 t  + 0, equation (19) 
is recovered, while for K 2 f  +CO the equilibrium result c k ( C O )  = 2 ~ / ( k ’ +  K’), correspond- 
ing to C( r, CO) = exp( - K  I r l ) ,  is obtained. 

Another generalisation is the case of initial states with long-range order. For 
example, if there is, a non-zero net magnetisation, i.e. [S,(O)] = m # 0, we can write 
c ( l i - j l , ~ ) = m ~ + ~ ( ( i - j ( , ~ ) ,  giving c,(o)= ~ m 2 ~ , , o + C , ( 0 ) .  Then the k = ~  term 
has to be extracted explicitly before converting sums over k to integrals._As a result, 
the left-hand side of (15) becomes 1-m2, and Ck(0) is replaced by Ck(0) on the 
right-hand side. The resulting correlation function, in the scaling limit, is C,,,(r, t )  = 
m 2 + ( l  - m 2 ) C ( r ,  t ) ,  with C(r ,  t )  given by (20). This very simple form, in which the 
magnetisation does not grow with time, is special to one dimension. If the initial state 
contains long-range order described by a k-vector ko # 0, it is easy to show that (20) 
is recovered for times t such that ki t  >> 1. 

So far we have considered only equal-time spin correlations. It is also possible to 
calculate spin-spin correlations for different times, i.e. C#,,( t ,  t ’ )  = ( S , (  t )S,(  t ’ ) ) .  Taking 
t ’ >  t without loss of generality, and specialising to T =0,  we find instead of (3) 

(d/dt’)C,,, = -Cl,, +f(Ct,,+i+ Ct.J-1). 

Taking an average over initial conditions to restore translational invariance, and Fourier 
transforming, gives 

(d/dt’)Ck(t, t ’ )  = -(k2/2)Ck(f, t ’ )  (22) 

where we have once more used 1 -cos k = k2/2 for small k. Using the previously 
calculated equal-time structure factor as an initial condition at t’ = t yields 

c k ( t ,  f ’ ) =  C k ( f ,  f )  exp{-k2(t’-r)/2} t ‘ >  t. (23) 
In particular, the autocorrelation function C(0, t, t ’ )  = [ ( S , ( t ) S , ( f ’ ) ) ]  is given by 

2 1 / (  I +  1 ’ )  

C(0, t, t ’ )  = I, (dY/.rr)[Y(l -Y) I - l / ’  

i.e., it depends only on the ratio t / t ’  in the scaling limit. Note that C(0, t, t )  = 1, as 
required, while for t ’  >> t 

C(0, t ,  t ’ )  = (2/7r)(2f/f’)1/2 t ’>> t. (24) 

Equations (23) and (24) are examples of ‘multi-time scaling’ of the type recently 
discussed by Furukawa [ 113. A similar power-law decay of the autocorrelation function, 
C(0, t, t ’ )  - t ’ - ( d - p ) / z  for fixed t ,  is also encountered following a quench to the critical 
point [12-141, where z is the dynamic critical exponent. It has been shown [12] that 
the new exponent p characterising non-equilibrium critical dynamics is unrelated to 
z and the static critical exponents. It has been calculated [12, 131 in the E and l / n  
expansions. It is worth noting that at T=O the one-dimensional model considered 
here is simultaneously in the ordered phase and at its critical point! This novel feature 
is a consequence of the system being at its lower critical dimension. From (24) we 
deduce (using z = 2) that p = 0 for d = 1. (Alternatively, p = 0 follows from the absence 
of any prefactor involving a power of t’  in (23)). 

An approximate form for the domain-growth scaling function for dimensions d 2 2 
has been proposed by Ohta et a1 [ 6 ] .  Simply putting d = 1 in their general expression 
produces a result different from that derived in this letter. However, although the 
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growth exponent f for a non-conserved order parameter is independent of dimension, 
the underlying physics is somewhat different in one dimension. For d 2 2, the mechan- 
ism driving domain growth is the curvature of the domain walls. For d = 1 this 
mechanism is absent. Instead, the Glauber dynamics considered here provides residual 
noise at T = 0 which causes the domain walls to perform independent random walks. 
If two domain walls occupy neighbouring bonds they annihilate. This leads to a 
decrease of the domain-wall density with time and, eventually, to the scaling behaviour 
discussed above. 

In summary, the scaling function for domain growth in the one-dimensional Ising 
model with Glauber dynamics has been calculated. It is universal, i.e. independent of 
the initial spin state provided the latter contains no ferromagnetic long-range order. 

It is a pleasure to thank K Kawasaki, A J McKane and M A Moore for helpful 
discussions. 
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